Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 156
Filtrar
1.
Biomedicines ; 12(3)2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38540254

RESUMO

Cisplatin, a chemotherapeutic agent, can cause nephrotoxic and ototoxic injuries. Using a mouse model of repeated low dose cisplatin (RLDC), we compared the kidneys of cisplatin- and vehicle-treated mice on days 3 (early injury phase) and 35 (late injury/recovery phase) after the final treatment. RNA-seq analyses revealed increases in the expression of markers of kidney injury (e.g., lipocalin 2 and kidney injury molecule 1) and fibrosis (e.g., collagen 1, fibronectin, and vimentin 1) in RLDC mice. In addition, we observed increased expression of polyamine catabolic enzymes (spermidine/spermine N1-acetyltransferase, Sat1, and spermine oxidase, Smox) and decreased expression of ornithine decarboxylase (Odc1), a rate-limiting enzyme in polyamine synthesis in mice subjected to RLDC. Upon confirmation of the RNA-seq results, we tested the hypothesis that enhanced polyamine catabolism contributes to the onset of renal injury and development of fibrosis. To test our hypothesis, we compared the severity of RLDC-induced renal injury and fibrosis in wildtype (WT), Sat1-KO, and Smox-KO mice. Our results suggest that the ablation of polyamine catabolic enzymes reduces the severity of renal injury and that modulation of the activity of these enzymes may protect against kidney damage and fibrosis caused by cisplatin treatment.

2.
Cureus ; 16(1): e51757, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38318572

RESUMO

Abiraterone acetate causes an adrenocorticotropic hormone (ACTH)-mediated mineralocorticoid excess. We present a 77-year-old man with prostate adenocarcinoma who developed signs and symptoms of mineralocorticoid excess while on abiraterone and discuss its pathophysiology and treatment options. The patient developed hypokalemia, metabolic alkalosis, and hypertension, indicative of increased mineralocorticoid activity, confirmed by elevated ACTH, corticosterone, and deoxycorticosterone levels. Abiraterone inhibits cytochrome P450c17 (CYP17A1), thus inhibiting testosterone and cortisol synthesis. Diminished cortisol synthesis, in turn, leads to excessive mineralocorticoid precursor production mediated by ACTH, leading to enhanced sodium absorption and potassium excretion. Abiraterone is often prescribed with low-dose prednisone to suppress ACTH; however, this strategy may not provide physiological glucocorticoid levels, resulting in ACTH-mediated mineralocorticoid excess in some patients. High-dose steroids or mineralocorticoid antagonists may activate mutant androgen receptors in prostate cancer tissue; therefore, amiloride is suggested for managing residual mineralocorticoid activity. This case highlights the importance of being vigilant for the signs and symptoms of mineralocorticoid excess in patients on abiraterone.

3.
Front Endocrinol (Lausanne) ; 14: 1321338, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38144560

RESUMO

The Syndrome of Inappropriate ADH secretion (SIADH) presents with excess ADH release caused by a range of conditions; including pneumonia, brain tumors, certain lung cancers, and diseases of the hypothalamus. It presents with significant reduction in both sodium and chloride concentrations in the blood. However, reports examining the acid base status indicate a normal serum bicarbonate concentration and systemic acid base homeostasis. The mechanisms for the absence of abnormalities in acid base homeostasis remain speculative. This mini review is highlighting the recent advances in renal molecular physiology to provide answers for the maintenance of acid base status and serum bicarbonate in a physiological range.


Assuntos
Hiponatremia , Síndrome de Secreção Inadequada de HAD , Humanos , Hiponatremia/etiologia , Síndrome de Secreção Inadequada de HAD/complicações , Bicarbonatos , Diuréticos , Homeostase , Vasopressinas
4.
Front Physiol ; 14: 1289388, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38028758

RESUMO

Tuberous Sclerosis Complex (TSC) is an autosomal dominant genetic disease caused by mutations in either TSC1 or TSC2 genes. Approximately, two million individuals suffer from this disorder worldwide. TSC1 and TSC2 code for the proteins harmartin and tuberin, respectively, which form a complex that regulates the mechanistic target of rapamycin complex 1 (mTORC1) and prevents uncontrollable cell growth. In the kidney, TSC presents with the enlargement of benign tumors (angiomyolipomas) and cysts whose presence eventually causes kidney failure. The factors promoting cyst formation and tumor growth in TSC are poorly understood. Recent studies on kidney cysts in various mouse models of TSC, including mice with principal cell- or pericyte-specific inactivation of TSC1 or TSC2, have identified a unique cystogenic mechanism. These studies demonstrate the development of numerous cortical cysts that are predominantly comprised of hyperproliferating A-intercalated (A-IC) cells that express both TSC1 and TSC2. An analogous cellular phenotype in cystic epithelium is observed in both humans with TSC and in TSC2+/- mice, confirming a similar kidney cystogenesis mechanism in TSC. This cellular phenotype profoundly contrasts with kidney cysts found in Autosomal Dominant Polycystic Kidney Disease (ADPKD), which do not show any notable evidence of A-IC cells participating in the cyst lining or expansion. RNA sequencing (RNA-Seq) and confirmatory expression studies demonstrate robust expression of Forkhead Box I1 (FOXI1) transcription factor and its downstream targets, including apical H+-ATPase and cytoplasmic carbonic anhydrase 2 (CAII), in the cyst epithelia of Tsc1 (or Tsc2) knockout (KO) mice, but not in Polycystic Kidney Disease (Pkd1) mutant mice. Deletion of FOXI1, which is vital to H+-ATPase expression and intercalated (IC) cell viability, completely inhibited mTORC1 activation and abrogated the cyst burden in the kidneys of Tsc1 KO mice. These results unequivocally demonstrate the critical role that FOXI1 and A-IC cells, along with H+-ATPase, play in TSC kidney cystogenesis. This review article will discuss the latest research into the causes of kidney cystogenesis in TSC with a focus on possible therapeutic options for this devastating disease.

5.
Acad Med ; 98(10): 1120-1130, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37200479

RESUMO

A combination of forces have markedly increased challenges to research-active faculty achieving sustained success. This article describes how one department at the University of Cincinnati College of Medicine (UCCOM) implemented a strategic plan, the Research Initiative Supporting Excellence at the University of Cincinnati (RISE-UC), to promote the research activity of its research-active faculty, fiscal year (FY) 2011-FY 2021. RISE-UC was implemented and regularly updated to address evolving needs. RISE-UC supported faculty members pursuing research via fiscal and administrative services to grow a critical mass of investigators; establish a shared governance model; create pathways for developing physician-scientists; develop discrete and targeted internal research funding; establish an Academic Research Service (ARS) unit (as infrastructure to support research); enhance faculty member mentorship; and recognize, celebrate, and reward research success. RISE-UC was informed by shared governance and resulted in substantial increases in total size of the faculty and external funding. More than 50% of Physician-Scientist Training Program graduates are active researchers at UCCOM. The internal awards program realized a return on investment of ~16.4-fold, and total external direct cost research funds increased from ~$55,400,000 (FY 2015) to ~$114,500,000 (FY 2021). The ARS assisted in the submission of 57 grant proposals and provided services faculty members generally found very helpful or helpful. The peer-mentoring group for early-career faculty members resulted in 12 of 23 participants receiving major grant funding (≥ $100,000; spring 2017-spring 2021) from sources including National Institutes of Health awards, Department of Defense funding, Veterans Affairs funding, and foundation awards. Research recognition included ~$77,000/year in incentive payments to faculty members for grant submissions and grants awarded. RISE-UC is an example of a comprehensive approach to promote research faculty member success and may serve as a model for other institutions with similar aspirations.


Assuntos
Medicina , Tutoria , Estados Unidos , Humanos , Docentes , Mentores , National Institutes of Health (U.S.)
6.
FASEB J ; 37(4): e22835, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36856735

RESUMO

Through its classic ATP-dependent ion-pumping function, basolateral Na/K-ATPase (NKA) generates the Na+ gradient that drives apical Na+ reabsorption in the renal proximal tubule (RPT), primarily through the Na+ /H+ exchanger (NHE3). Accordingly, activation of NKA-mediated ion transport decreases natriuresis through activation of basolateral (NKA) and apical (NHE3) Na+ reabsorption. In contrast, activation of the more recently discovered NKA signaling function triggers cellular redistribution of RPT NKA and NHE3 and decreases Na+ reabsorption. We used gene targeting to test the respective contributions of NKA signaling and ion pumping to the overall regulation of RPT Na+ reabsorption. Knockdown of RPT NKA in cells and mice increased membrane NHE3 and Na+ /HCO3 - cotransporter (NBCe1A). Urine output and absolute Na+ excretion decreased by 65%, driven by increased RPT Na+ reabsorption (as indicated by decreased lithium clearance and unchanged glomerular filtration rate), and accompanied by elevated blood pressure. This hyper reabsorptive phenotype was rescued upon crossing with RPT NHE3-/- mice, confirming the importance of NKA/NHE3 coupling. Hence, NKA signaling exerts a tonic inhibition on Na+ reabsorption by regulating key apical and basolateral Na+ transporters. This action, lifted upon NKA genetic suppression, tonically counteracts NKA's ATP-driven function of basolateral Na+ reabsorption. Strikingly, NKA signaling is not only physiologically relevant but it also appears to be functionally dominant over NKA ion pumping in the control of RPT reabsorption.


Assuntos
Túbulos Renais , Sódio , Animais , Camundongos , Trocador 3 de Sódio-Hidrogênio , ATPase Trocadora de Sódio-Potássio , Trifosfato de Adenosina
7.
Int J Mol Sci ; 24(5)2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36901725

RESUMO

Metabolic syndrome is manifested by visceral obesity, hypertension, glucose intolerance, hyperinsulinism, and dyslipidemia. According to the CDC, metabolic syndrome in the US has increased drastically since the 1960s leading to chronic diseases and rising healthcare costs. Hypertension is a key component of metabolic syndrome and is associated with an increase in morbidity and mortality due to stroke, cardiovascular ailments, and kidney disease. The pathogenesis of hypertension in metabolic syndrome, however, remains poorly understood. Metabolic syndrome results primarily from increased caloric intake and decreased physical activity. Epidemiologic studies show that an enhanced consumption of sugars, in the form of fructose and sucrose, correlates with the amplified prevalence of metabolic syndrome. Diets with a high fat content, in conjunction with elevated fructose and salt intake, accelerate the development of metabolic syndrome. This review article discusses the latest literature in the pathogenesis of hypertension in metabolic syndrome, with a specific emphasis on the role of fructose and its stimulatory effect on salt absorption in the small intestine and kidney tubules.


Assuntos
Hipertensão , Síndrome Metabólica , Humanos , Síndrome Metabólica/etiologia , Frutose/metabolismo , Cloreto de Sódio na Dieta , Dieta
8.
Am J Pathol ; 193(2): 191-200, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36336066

RESUMO

Kidney cyst expansion in tuberous sclerosis complex (TSC) or polycystic kidney disease (PKD) requires active secretion of chloride (Cl-) into the cyst lumen. In PKD, Cl- secretion is primarily mediated via the cystic fibrosis transmembrane conductance regulator (CFTR) in principal cells. Kidney cystogenesis in TSC is predominantly composed of type A intercalated cells, which do not exhibit noticeable expression of CFTR. The identity of the Cl--secreting molecule(s) in TSC cyst epithelia remains speculative. RNA-sequencing analysis results were used to examine the expression of FOXi1, the chief regulator of acid base transporters in intercalated cells, along with localization of Cl- channel 5 (ClC5), in various models of TSC. Results from Tsc2+/- mice showed that the expansion of kidney cysts corresponded to the induction of Foxi1 and correlated with the appearance of ClC5 and H+-ATPase on the apical membrane of cyst epithelia. In various mouse models of TSC, Foxi1 was robustly induced in the kidney, and ClC5 and H+-ATPase were expressed on the apical membrane of cyst epithelia. Expression of ClC5 was also detected on the apical membrane of cyst epithelia in humans with TSC but was absent in humans with autosomal dominant PKD or in a mouse model of PKD. These results indicate that ClC5 is expressed on the apical membrane of cyst epithelia and is a likely candidate mediating Cl- secretion into the kidney cyst lumen in TSC.


Assuntos
Cistos , Doenças Renais Policísticas , Esclerose Tuberosa , Humanos , Animais , Camundongos , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Cloretos/metabolismo , Esclerose Tuberosa/metabolismo , Rim/metabolismo , Epitélio/metabolismo , Fatores de Transcrição Forkhead/metabolismo
9.
Int J Mol Sci ; 23(18)2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36142537

RESUMO

Tuberous sclerosis complex (TSC) is caused by mutations in the hamartin (TSC1) or tuberin (TSC2) genes. Using a mouse model of TSC renal cystogenesis that we have previously described, the current studies delineate the metabolic changes in the kidney and their relation to alterations in renal gene expression. To accomplish this, we compared the metabolome and transcriptome of kidneys from 28-day-old wildtype (Wt) and principal cell-specific Tsc1 KO (Tsc1 KO) mice using targeted 1H nuclear magnetic resonance targeted metabolomic and RNA-seq analyses. The significant changes in the kidney metabolome of Tsc1 KO mice included reductions in the level of several amino acids and significant decreases in creatine, NADH, inosine, UDP-galactose, GTP and myo-inositol levels. These derangements may affect energy production and storage, signal transduction and synthetic pathways. The pertinent derangement in the transcriptome of Tsc1 KO mice was associated with increased collecting duct acid secretion, active cell division and the up-regulation of signaling pathways (e.g., MAPK and AKT/PI3K) that suppress the TSC2 GTPase-activating function. The combined renal metabolome and transcriptome alterations observed in these studies correlate with the unregulated growth and predominance of genotypically normal A-intercalated cells in the epithelium of renal cysts in Tsc1 KO mice.


Assuntos
Esclerose Tuberosa , Proteínas Supressoras de Tumor , Humanos , Creatina/metabolismo , Galactose/metabolismo , GTP Fosfo-Hidrolases/genética , Guanosina Trifosfato/metabolismo , Inosina/metabolismo , Inositol/metabolismo , Rim/metabolismo , Metaboloma , NAD/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transcriptoma , Esclerose Tuberosa/metabolismo , Proteína 1 do Complexo Esclerose Tuberosa/genética , Proteína 1 do Complexo Esclerose Tuberosa/metabolismo , Proteína 2 do Complexo Esclerose Tuberosa/genética , Proteína 2 do Complexo Esclerose Tuberosa/metabolismo , Proteínas Supressoras de Tumor/genética , Difosfato de Uridina/metabolismo
10.
Endocrinology ; 163(9)2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35881515

RESUMO

Cytokines are known to perturb thyroid function and the role of interleukin-4 (IL-4) in the pathogenesis of Graves disease (GD) remains controversial. In our mouse model overexpressing IL-4 in thyrocytes (Thyr-IL4), we have reported that adult mice preserved normal serum thyroxine despite an iodide uptake defect. In the present work, we evaluated if iodine restriction could uncover the thyroid deficiency in Thyr-IL4 animals as well as the role of pendrin overexpression as a compensatory mechanism. Moreover, using an experimental model of GD we investigated the effect of a local expression of IL-4 on the incidence of hyperthyroidism. Thyr-IL4 mice developed more rapidly elevated serum thyrotropin under low-iodine supply with thyroid enlargement and classical histological modifications. These hallmarks of hypothyroidism were all enhanced in Thyr-IL4 mice with complete pendrin invalidation. Following immunization, a lower proportion of Thyr-IL4 animals developed hyperthyroidism. Surprisingly, immunized Thyr-IL4 animals presented numerous leukocyte infiltrates, associated with increased intrathyroidal expression of IFN-γ. We have demonstrated that thyroid deficiency in Thyr-IL4 mice is partially compensated for by the excessive iodide content of the standard chow and the overexpression of pendrin in these animals. Furthermore, we have shown that the local expression of IL-4 in the thyroid attenuates GD progression, which was associated with enhanced thyroid infiltration by immune cells that could negatively affect thyroid function.


Assuntos
Doença de Graves , Hipotireoidismo , Interleucina-4 , Iodo , Animais , Doença de Graves/genética , Doença de Graves/metabolismo , Hipertireoidismo , Interleucina-4/metabolismo , Iodetos/metabolismo , Camundongos , Transportadores de Sulfato , Tiroxina/metabolismo
11.
Med Sci (Basel) ; 10(3)2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35893120

RESUMO

The polyamines spermidine and spermine are positively charged aliphatic molecules. They are critical in the regulation of nucleic acid and protein structures, protein synthesis, protein and nucleic acid interactions, oxidative balance, and cell proliferation. Cellular polyamine levels are tightly controlled through their import, export, de novo synthesis, and catabolism. Enzymes and enzymatic cascades involved in polyamine metabolism have been well characterized. This knowledge has been used for the development of novel compounds for research and medical applications. Furthermore, studies have shown that disturbances in polyamine levels and their metabolic pathways, as a result of spontaneous mutations in patients, genetic engineering in mice or experimentally induced injuries in rodents, are associated with multiple maladaptive changes. The adverse effects of altered polyamine metabolism have also been demonstrated in in vitro models. These observations highlight the important role these molecules and their metabolism play in the maintenance of physiological normalcy and the mediation of injury. This review will attempt to cover the extensive and diverse knowledge of the biological role of polyamines and their metabolism in the maintenance of physiological homeostasis and the mediation of tissue injury.


Assuntos
Ácidos Nucleicos , Poliaminas , Animais , Homeostase , Camundongos , Poliaminas/metabolismo , Espermidina/metabolismo , Espermina/metabolismo
12.
Am J Kidney Dis ; 80(4): 536-551, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35525634

RESUMO

Metabolic alkalosis is a widespread acid-base disturbance, especially in hospitalized patients. It is characterized by the primary elevation of serum bicarbonate and arterial pH, along with a compensatory increase in Pco2 consequent to adaptive hypoventilation. The pathogenesis of metabolic alkalosis involves either a loss of fixed acid or a net accumulation of bicarbonate within the extracellular fluid. The loss of acid may be via the gastrointestinal tract or the kidney, whereas the sources of excess alkali may be via oral or parenteral alkali intake. Severe metabolic alkalosis in critically ill patients-arterial blood pH of 7.55 or higher-is associated with significantly increased mortality rate. The kidney is equipped with sophisticated mechanisms to avert the generation or the persistence (maintenance) of metabolic alkalosis by enhancing bicarbonate excretion. These mechanisms include increased filtration as well as decreased absorption and enhanced secretion of bicarbonate by specialized transporters in specific nephron segments. Factors that interfere with these mechanisms will impair the ability of the kidney to eliminate excess bicarbonate, therefore promoting the generation or impairing the correction of metabolic alkalosis. These factors include volume contraction, low glomerular filtration rate, potassium deficiency, hypochloremia, aldosterone excess, and elevated arterial carbon dioxide. Major clinical states are associated with metabolic alkalosis, including vomiting, aldosterone or cortisol excess, licorice ingestion, chloruretic diuretics, excess calcium alkali ingestion, and genetic diseases such as Bartter syndrome, Gitelman syndrome, and cystic fibrosis. In this installment in the AJKD Core Curriculum in Nephrology, we will review the pathogenesis of metabolic alkalosis; appraise the precipitating events; and discuss clinical presentations, diagnoses, and treatments of metabolic alkalosis.


Assuntos
Alcalose , Bicarbonatos , Aldosterona , Álcalis , Alcalose/diagnóstico , Alcalose/etiologia , Alcalose/terapia , Bicarbonatos/metabolismo , Bicarbonatos/uso terapêutico , Cálcio , Dióxido de Carbono , Currículo , Diuréticos , Humanos , Hidrocortisona
13.
Front Mol Biosci ; 9: 874186, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35601831

RESUMO

Background: Several members of the SLC26A family of transporters, including SLC26A3 (DRA), SLC26A5 (prestin), SLC26A6 (PAT-1; CFEX) and SLC26A9, form multi-protein complexes with a number of molecules (e.g., cytoskeletal proteins, anchoring or adaptor proteins, cystic fibrosis transmembrane conductance regulator, and protein kinases). These interactions provide regulatory signals for these molecules. However, the identity of proteins that interact with the Cl-/HCO3 - exchanger, SLC26A4 (pendrin), have yet to be determined. The purpose of this study is to identify the protein(s) that interact with pendrin. Methods: A yeast two hybrid (Y2H) system was employed to screen a mouse kidney cDNA library using the C-terminal fragment of SLC26A4 as bait. Immunofluorescence microscopic examination of kidney sections, as well as co-immunoprecipitation assays, were performed using affinity purified antibodies and kidney protein extracts to confirm the co-localization and interaction of pendrin and the identified binding partners. Co-expression studies were carried out in cultured cells to examine the effect of binding partners on pendrin trafficking and activity. Results: The Y2H studies identified IQ motif-containing GTPase-activating protein 1 (IQGAP1) as a protein that binds to SLC26A4's C-terminus. Co-immunoprecipitation experiments using affinity purified anti-IQGAP1 antibodies followed by western blot analysis of kidney protein eluates using pendrin-specific antibodies confirmed the interaction of pendrin and IQGAP1. Immunofluorescence microscopy studies demonstrated that IQGAP1 co-localizes with pendrin on the apical membrane of B-intercalated cells, whereas it shows basolateral expression in A-intercalated cells in the cortical collecting duct (CCD). Functional and confocal studies in HEK-293 cells, as well as confocal studies in MDCK cells, demonstrated that the co-transfection of pendrin and IQGAP1 shows strong co-localization of the two molecules on the plasma membrane along with enhanced Cl-/HCO3 - exchanger activity. Conclusion: IQGAP1 was identified as a protein that binds to the C-terminus of pendrin in B-intercalated cells. IQGAP1 co-localized with pendrin on the apical membrane of B-intercalated cells. Co-expression of IQGAP1 with pendrin resulted in strong co-localization of the two molecules and increased the activity of pendrin in the plasma membrane in cultured cells. We propose that pendrin's interaction with IQGAP1 may play a critical role in the regulation of CCD function and physiology, and that disruption of this interaction could contribute to altered pendrin trafficking and/or activity in pathophysiologic states.

14.
Int J Mol Sci ; 23(4)2022 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-35216358

RESUMO

As of December 2021, SARS-CoV-2 had caused over 250 million infections and 5 million deaths worldwide. Furthermore, despite the development of highly effective vaccines, novel variants of SARS-CoV-2 continue to sustain the pandemic, and the search for effective therapies for COVID-19 remains as urgent as ever. Though the primary manifestation of COVID-19 is pneumonia, the disease can affect multiple organs, including the kidneys, with acute kidney injury (AKI) being among the most common extrapulmonary manifestations of severe COVID-19. In this article, we start by reflecting on the epidemiology of kidney disease in COVID-19, which overwhelmingly demonstrates that AKI is common in COVID-19 and is strongly associated with poor outcomes. We also present emerging data showing that COVID-19 may result in long-term renal impairment and delve into the ongoing debate about whether AKI in COVID-19 is mediated by direct viral injury. Next, we focus on the molecular pathogenesis of SARS-CoV-2 infection by both reviewing previously published data and presenting some novel data on the mechanisms of cellular viral entry. Finally, we relate these molecular mechanisms to a series of therapies currently under investigation and propose additional novel therapeutic targets for COVID-19.


Assuntos
Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/etiologia , COVID-19/complicações , Rim/virologia , Injúria Renal Aguda/epidemiologia , Injúria Renal Aguda/mortalidade , Animais , Humanos , Rim/fisiopatologia , Insuficiência Renal Crônica/etiologia , Insuficiência Renal Crônica/virologia
15.
Cell ; 184(16): 4168-4185.e21, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34216539

RESUMO

Metabolism is a major regulator of immune cell function, but it remains difficult to study the metabolic status of individual cells. Here, we present Compass, an algorithm to characterize cellular metabolic states based on single-cell RNA sequencing and flux balance analysis. We applied Compass to associate metabolic states with T helper 17 (Th17) functional variability (pathogenic potential) and recovered a metabolic switch between glycolysis and fatty acid oxidation, akin to known Th17/regulatory T cell (Treg) differences, which we validated by metabolic assays. Compass also predicted that Th17 pathogenicity was associated with arginine and downstream polyamine metabolism. Indeed, polyamine-related enzyme expression was enhanced in pathogenic Th17 and suppressed in Treg cells. Chemical and genetic perturbation of polyamine metabolism inhibited Th17 cytokines, promoted Foxp3 expression, and remodeled the transcriptome and epigenome of Th17 cells toward a Treg-like state. In vivo perturbations of the polyamine pathway altered the phenotype of encephalitogenic T cells and attenuated tissue inflammation in CNS autoimmunity.


Assuntos
Autoimunidade/imunologia , Modelos Biológicos , Células Th17/imunologia , Acetiltransferases/metabolismo , Trifosfato de Adenosina/metabolismo , Aerobiose/efeitos dos fármacos , Algoritmos , Animais , Autoimunidade/efeitos dos fármacos , Cromatina/metabolismo , Ciclo do Ácido Cítrico/efeitos dos fármacos , Citocinas/metabolismo , Eflornitina/farmacologia , Encefalomielite Autoimune Experimental/metabolismo , Encefalomielite Autoimune Experimental/patologia , Epigenoma , Ácidos Graxos/metabolismo , Glicólise/efeitos dos fármacos , Histona Desmetilases com o Domínio Jumonji/metabolismo , Camundongos Endogâmicos C57BL , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Oxirredução/efeitos dos fármacos , Putrescina/metabolismo , Análise de Célula Única , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/imunologia , Células Th17/efeitos dos fármacos , Transcriptoma/genética
16.
Curr Hypertens Rep ; 23(6): 34, 2021 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-34110521

RESUMO

PURPOSE OF REVIEW: The sodium (Na+) and hydrogen (H+) exchanger 3 (NHE3), known as solute carrier family 9 member 3 (SLC9A3), mediates active transcellular Na+ and bicarbonate reabsorption in the small intestine of the gut and proximal tubules of the kidney. The purpose of this article is to review and discuss recent findings on the critical roles of intestinal and proximal tubule NHE3 in maintaining basal blood pressure (BP) homeostasis and their potential therapeutic implications in the development of angiotensin II (Ang II)-dependent hypertension. RECENT FINDINGS: Recently, our and other laboratories have generated or used novel genetically modified mouse models with whole-body, kidney-specific, or proximal tubule-specific deletion of NHE3 to determine the critical roles and underlying mechanisms of NHE3 in maintaining basal BP homeostasis and the development of Ang II-induced hypertension at the whole-body, kidney, or proximal tubule levels. The new findings demonstrate that NHE3 contributes to about 10 to 15 mmHg to basal blood pressure levels, and that deletion of NHE3 at the whole-kidney or proximal tubule level, or pharmacological inhibition of NHE3 at the kidney level with an orally absorbable NHE3 inhibitor AVE-0657, attenuates ~ 50% of Ang II-induced hypertension in mice. The results support the proof-of-concept hypothesis that NHE3 plays critical roles in physiologically maintaining normal BP and in the development of Ang II-dependent hypertension. Our results also strongly suggest that NHE3 in the proximal tubules of the kidney may be therapeutically targeted to treat poorly controlled hypertension in humans.


Assuntos
Hipertensão , Angiotensina II/metabolismo , Animais , Humanos , Hipertensão/tratamento farmacológico , Túbulos Renais Proximais , Camundongos , Trocador 3 de Sódio-Hidrogênio , Trocadores de Sódio-Hidrogênio
17.
Proc Natl Acad Sci U S A ; 118(6)2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33536341

RESUMO

Tuberous sclerosis complex (TSC) is caused by mutations in either TSC1 or TSC2 genes and affects multiple organs, including kidney, lung, and brain. In the kidney, TSC presents with the enlargement of benign tumors (angiomyolipomata) and cysts, which eventually leads to kidney failure. The factors promoting cyst formation and tumor growth in TSC are incompletely understood. Here, we report that mice with principal cell-specific inactivation of Tsc1 develop numerous cortical cysts, which are overwhelmingly composed of hyperproliferating A-intercalated (A-IC) cells. RNA sequencing and confirmatory expression studies demonstrated robust expression of Forkhead Transcription Factor 1 (Foxi1) and its downstream targets, apical H+-ATPase and cytoplasmic carbonic anhydrase 2 (CAII), in cyst epithelia in Tsc1 knockout (KO) mice but not in Pkd1 mutant mice. In addition, the electrogenic 2Cl-/H+ exchanger (CLC-5) is significantly up-regulated and shows remarkable colocalization with H+-ATPase on the apical membrane of cyst epithelia in Tsc1 KO mice. Deletion of Foxi1, which is vital to intercalated cells viability and H+-ATPase expression, completely abrogated the cyst burden in Tsc1 KO mice, as indicated by MRI images and histological analysis in kidneys of Foxi1/Tsc1 double-knockout (dKO) mice. Deletion of CAII, which is critical to H+-ATPase activation, caused significant reduction in cyst burden and increased life expectancy in CAII/Tsc1 dKO mice vs. Tsc1 KO mice. We propose that intercalated cells and their acid/base/electrolyte transport machinery (H+-ATPase/CAII/CLC-5) are critical to cystogenesis, and their inhibition or inactivation is associated with significant protection against cyst generation and/or enlargement in TSC.


Assuntos
Anidrase Carbônica II/genética , Fatores de Transcrição Forkhead/genética , Insuficiência Renal/genética , Proteína 1 do Complexo Esclerose Tuberosa/genética , Animais , Cistos/genética , Cistos/patologia , Modelos Animais de Doenças , Humanos , Rim/metabolismo , Rim/patologia , Camundongos , Mutação/genética , ATPases Translocadoras de Prótons/genética , Insuficiência Renal/patologia , Canais de Cátion TRPP/genética , Esclerose Tuberosa
18.
J Physiol Sci ; 71(1): 5, 2021 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-33514305

RESUMO

The anion exchanger slc26a3 (DRA), which is mutated in congenital chloride-losing diarrhea, is expressed in the apical membrane of the cecum and middle-distal colon but not in the proximal colon of rodent large intestines. To elucidate the functional roles of DRA, we measured unidirectional 36Cl- and 22Na+ fluxes and HCO3- secretion in vitro in each of these segments using DRA-KO mice. Robust Cl- absorption, which was largely abolished after DRA deficiency, was present in the cecum and middle-distal colon but absent in the proximal colon. Na+ absorption was present in all three segments in both the control and DRA-KO mice. The luminal-Cl--dependent HCO3- secretions in the cecum and middle-distal colon were abolished in the DRA-KO mice. In conclusion, DRA mediates Cl- absorption and HCO3- secretion in the mouse cecum and middle-distal colon, and may have roles in H2O absorption and luminal acid/base regulation in these segments.


Assuntos
Antiporters/metabolismo , Bicarbonatos/metabolismo , Cloretos/metabolismo , Intestino Grosso/metabolismo , Transportadores de Sulfato/metabolismo , Animais , Antiporters/genética , Fezes/química , Genótipo , Concentração de Íons de Hidrogênio , Camundongos , Camundongos Knockout , Sódio/metabolismo , Transportadores de Sulfato/genética , Técnicas de Cultura de Tecidos
19.
J Neuroinflammation ; 17(1): 301, 2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-33054763

RESUMO

BACKGROUND: Polyamine catabolism plays a key role in maintaining intracellular polyamine pools, yet its physiological significance is largely unexplored. Here, we report that the disruption of polyamine catabolism leads to severe cerebellar damage and ataxia, demonstrating the fundamental role of polyamine catabolism in the maintenance of cerebellar function and integrity. METHODS: Mice with simultaneous deletion of the two principal polyamine catabolic enzymes, spermine oxidase and spermidine/spermine N1-acetyltransferase (Smox/Sat1-dKO), were generated by the crossbreeding of Smox-KO (Smox-/-) and Sat1-KO (Sat1-/-) animals. Development and progression of tissue injury was monitored using imaging, behavioral, and molecular analyses. RESULTS: Smox/Sat1-dKO mice are normal at birth, but develop progressive cerebellar damage and ataxia. The cerebellar injury in Smox/Sat1-dKO mice is associated with Purkinje cell loss and gliosis, leading to neuroinflammation and white matter demyelination during the latter stages of the injury. The onset of tissue damage in Smox/Sat1-dKO mice is not solely dependent on changes in polyamine levels as cerebellar injury was highly selective. RNA-seq analysis and confirmatory studies revealed clear decreases in the expression of Purkinje cell-associated proteins and significant increases in the expression of transglutaminases and markers of neurodegenerative microgliosis and astrocytosis. Further, the α-Synuclein expression, aggregation, and polyamination levels were significantly increased in the cerebellum of Smox/Sat1-dKO mice. Finally, there were clear roles of transglutaminase-2 (TGM2) in the cerebellar pathologies manifest in Smox/Sat1-dKO mice, as pharmacological inhibition of transglutaminases reduced the severity of ataxia and cerebellar injury in Smox/Sat1-dKO mice. CONCLUSIONS: These results indicate that the disruption of polyamine catabolism, via coordinated alterations in tissue polyamine levels, elevated transglutaminase activity and increased expression, polyamination, and aggregation of α-Synuclein, leads to severe cerebellar damage and ataxia. These studies indicate that polyamine catabolism is necessary to Purkinje cell survival, and for sustaining the functional integrity of the cerebellum.


Assuntos
Acetiltransferases/deficiência , Ataxia/enzimologia , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/deficiência , Células de Purkinje/enzimologia , Acetiltransferases/genética , Animais , Apoptose/fisiologia , Ataxia/genética , Ataxia/patologia , Cerebelo/enzimologia , Cerebelo/patologia , Inflamação/enzimologia , Inflamação/genética , Inflamação/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/genética , Células de Purkinje/patologia
20.
Am J Physiol Renal Physiol ; 319(4): F712-F728, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32893663

RESUMO

Inhibitors of proximal tubular Na+-glucose cotransporter 2 (SGLT2) are natriuretic, and they lower blood pressure. There are reports that the activities of SGLT2 and Na+-H+ exchanger 3 (NHE3) are coordinated. If so, then part of the natriuretic response to an SGLT2 inhibitor is mediated by suppressing NHE3. To examine this further, we compared the effects of an SGLT2 inhibitor, empagliflozin, on urine composition and systolic blood pressure (SBP) in nondiabetic mice with tubule-specific NHE3 knockdown (NHE3-ko) and wild-type (WT) littermates. A single dose of empagliflozin, titrated to cause minimal glucosuria, increased urinary excretion of Na+ and bicarbonate and raised urine pH in WT mice but not in NHE3-ko mice. Chronic empagliflozin treatment tended to lower SBP despite higher renal renin mRNA expression and lowered the ratio of SBP to renin mRNA, indicating volume loss. This effect of empagliflozin depended on tubular NHE3. In diabetic Akita mice, chronic empagliflozin enhanced phosphorylation of NHE3 (S552/S605), changes previously linked to lesser NHE3-mediated reabsorption. Chronic empagliflozin also increased expression of genes involved with renal gluconeogenesis, bicarbonate regeneration, and ammonium formation. While this could reflect compensatory responses to acidification of proximal tubular cells resulting from reduced NHE3 activity, these effects were at least in part independent of tubular NHE3 and potentially indicated metabolic adaptations to urinary glucose loss. Moreover, empagliflozin increased luminal α-ketoglutarate, which may serve to stimulate compensatory distal NaCl reabsorption, while cogenerated and excreted ammonium balances urine losses of this "potential bicarbonate." The data implicate NHE3 as a determinant of the natriuretic effect of empagliflozin.


Assuntos
Compostos Benzidrílicos/farmacologia , Diabetes Mellitus/tratamento farmacológico , Glucosídeos/farmacologia , Túbulos Renais Proximais/efeitos dos fármacos , Natriurese/efeitos dos fármacos , Natriuréticos/farmacologia , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Transportador 2 de Glucose-Sódio/metabolismo , Trocador 3 de Sódio-Hidrogênio/metabolismo , Equilíbrio Ácido-Base/efeitos dos fármacos , Animais , Glicemia/metabolismo , Pressão Sanguínea/efeitos dos fármacos , Diabetes Mellitus/metabolismo , Diabetes Mellitus/fisiopatologia , Modelos Animais de Doenças , Glicosúria/metabolismo , Glicosúria/fisiopatologia , Túbulos Renais Proximais/metabolismo , Túbulos Renais Proximais/fisiopatologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosforilação , Trocador 3 de Sódio-Hidrogênio/deficiência , Trocador 3 de Sódio-Hidrogênio/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...